Comparison of photoelectrochemical water oxidation activity of a synthetic photocatalyst system with photosystem II.
نویسندگان
چکیده
This discussion describes a direct comparison of photoelectrochemical (PEC) water oxidation activity between a photosystem II (PSII)-functionalised photoanode and a synthetic nanocomposite photoanode. The semi-biological photoanode is composed of PSII from the thermophilic cyanobacterium Thermosynechococcus elongatus on a mesoporous indium tin oxide electrode (mesoITO|PSII). PSII embeds all of the required functionalities for light absorption, charge separation and water oxidation and ITO serves solely as the electron collector. The synthetic photoanode consists of a TiO(2) and NiO(x) coated nanosheet-structured WO(3) electrode (nanoWO(3)|TiO(2)|NiO(x)). The composite structure of the synthetic electrode allows mimicry of the functional key features in PSII: visible light is absorbed by WO(3), TiO(2) serves as a protection and charge separation layer and NiO(x) serves as the water oxidation electrocatalyst. MesoITO|PSII uses low energy red light, whereas nanoWO(3)|TiO(2)|NiO(x) requires high energy photons of blue-end visible and UV regions to oxidise water. The electrodes have a comparable onset potential at approximately 0.6 V vs. reversible hydrogen electrode (RHE). MesoITO|PSII reaches its saturation photocurrent at 0.84 V vs. RHE, whereas nanoWO(3)|TiO(2)NiO(x) requires more than 1.34 V vs. RHE. This suggests that mesoITO|PSII suffers from fewer limitations from charge recombination and slow water oxidation catalysis than the synthetic electrode. MesoITO|PSII displays a higher 'per active' site activity, but is less photostable and displays a much lower photocurrent per geometrical surface area and incident photon to current conversion efficiency (IPCE) than nanoWO(3)|TiO(2)|NiO(x_.
منابع مشابه
Hybrid photocathode consisting of a CuGaO2 p-type semiconductor and a Ru(ii)–Re(i) supramolecular photocatalyst: non-biased visible-light-driven CO2 reduction with water oxidation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00940b Click here for additional data file.
A CuGaO2 p-type semiconductor electrode was successfully employed for constructing a new hybrid photocathode with a Ru(II)–Re(I) supramolecular photocatalyst (RuRe/CuGaO2). The RuRe/CuGaO2 photocathode displayed photoelectrochemical activity for the conversion of CO2 to CO in an aqueous electrolyte solution with a positive onset potential of +0.3 V vs. Ag/AgCl, which is 0.4 V more positive in c...
متن کاملHybrid photocathode consisting of a CuGaO2 p-type semiconductor and a Ru(ii)-Re(i) supramolecular photocatalyst: non-biased visible-light-driven CO2 reduction with water oxidation.
A CuGaO2 p-type semiconductor electrode was successfully employed for constructing a new hybrid photocathode with a Ru(ii)-Re(i) supramolecular photocatalyst (RuRe/CuGaO2). The RuRe/CuGaO2 photocathode displayed photoelectrochemical activity for the conversion of CO2 to CO in an aqueous electrolyte solution with a positive onset potential of +0.3 V vs. Ag/AgCl, which is 0.4 V more positive in c...
متن کاملProtein film photoelectrochemistry of the water oxidation enzyme photosystem II.
Photosynthesis is responsible for the sunlight-powered conversion of carbon dioxide and water into chemical energy in the form of carbohydrates and the release of O2 as a by-product. Although many proteins are involved in photosynthesis, the fascinating machinery of Photosystem II (PSII) is at the heart of this process. This tutorial review describes an emerging technique named protein film pho...
متن کاملDirect electron transfer from photosystem II to hematite in a hybrid photoelectrochemical cell.
A hybrid photoanode integrating the cyanobacterial photosystem II (PSII) with a hematite film for water oxidation is constructed. Direct electron transfer from PSII to the excited Ti/Fe2O3 electrode occurs under light irradiation, resulting in a significant improvement of the photocurrent.
متن کاملFactors in the Metal Doping of BiVO4 for Improved Photoelectrocatalytic Activity as Studied by Scanning Electrochemical Microscopy and First-Principles Density-Functional Calculation
The semiconductor properties important in the design of photocatalysts required for a photosynthetic system, e.g., a photoelectrochemical cell to split water to hydrogen and oxygen, have largely been taken to be the band gap energy, Eg, and the band-edge locations, Ec and Ev (usually with considerations of factors affecting stability). These affect the amount of solar energy absorbed in the mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Faraday discussions
دوره 176 شماره
صفحات -
تاریخ انتشار 2014